先给出全部公式:
$$ \begin{aligned} & \sin^{2n}{x}=\frac{1}{2^{2n-1}}\left[ \sum_{k=0}^{n-1}{2n \choose k}(-1)^{n-k}\cos{2(n-k)x} + \frac{1}{2}{2n \choose n} \right] \newline & \sin^{2n+1}{x}=\frac{1}{2^{2n}}\sum_{k=0}^{n}{2n+1 \choose k}(-1)^{n-k}\sin{(2n-2k+1)x} \newline & \cos^{2n}{x}=\frac{1}{2^{2n-1}}\left[ \sum_{k=0}^{n-1}{2n \choose k}\cos{2(n-k)x}+\frac{1}{2}{2n \choose n} \right] \newline & \cos^{2n+1}{x}=\frac{1}{2^{2n}}\sum_{k=0}^{n}{2n+1 \choose k}\cos{(2n-2k+1)x} \newline \end{aligned} $$
虽然看起来原本简单的式子被极大地复杂化了,但其实在很多命题中,它们起着十分不错的化简作用。
Proof
由欧拉恒等式$e^{ix}=\cos{x}+i\sin{x}$有
$$ \begin{cases} \sin x &=& \frac{e^{ix}-e^{-ix}}{2i} \newline \cos x &=& \frac{e^{ix}+e^{-ix}}{2} \end{cases} $$
可以得到 $$ \begin{aligned} \sin^{2n}{x} & = \left(\frac{e^{ix}-e^{-ix}}{2i}\right)^{2n} \newline & = \frac{1}{(-1)^{n}2^{2n}}\sum_{k=0}^{2n}{2n \choose k}{(-1)^{2n-k}e^{ixk-ix(2n-k)}} \newline & = \frac{1}{2^{2n}}\sum_{k=0}^{2n}{2n \choose k}(-1)^{(n-k)}e^{i2(n-k)x} \newline & = \frac{1}{2^{2n}}{2n \choose n}+\frac{1}{2^{2n-1}}\sum_{k=0}^{n-1}{2n \choose k}(-1)^{n-k}\cos{2(n-k)x}\newline \newline \cos^{2n}{x} & = \left(\frac{e^{ix}+e^{-ix}}{2}\right)^{2n} \newline & = \frac{1}{2^{n}}\sum_{k=0}^{2n}{2n \choose k}{e^{i2(k-n)x}} \newline & = \frac{1}{2^{2n}}\left[\sum_{k=0}^{n-1}{2n \choose k}{e^{i2(k-n)x}}+\sum_{k=0}^{n-1}{2n \choose k}{e^{i2(n-k)x}}\right] + \frac{1}{2^{2n}}{2n \choose n} \newline & = \frac{1}{2^{2n}}{2n \choose n}+\frac{1}{2^{2n-1}}\sum_{k=0}^{n-1}{2n \choose k}{\cos2(n-k)x} \end{aligned} $$
同理可证其它几个,这里懒得写了读者自证不难。
简单来说,证明思路就是:
- 先用欧拉恒等式和二项式定理,将其展开。
- 找到可以合并的项,再用欧拉恒等式转化回去。
拓展链接
上面有很多有趣的恒等式,一些看起来毫不相干的式子被紧密地联系起来……
有时间写点(有时间也不想(不会)写。)