三角函数降幂公式 - Power-reduction formulas

先给出全部公式: $$\begin{aligned} & \sin^{2n}{x}=\frac{1}{2^{2n-1}}\left[ \sum_{k=0}^{n-1}{2n \choose k}(-1)^{n-k}\cos{2(n-k)x} + \frac{1}{2}{2n \choose n} \right] \newline & \sin^{2n+1}{x}=\frac{1}{2^{2n}}\sum_{k=0}^{n}{2n+1 \choose k}(-1)^{n-k}\sin{(2n-2k+1)x} \newline & \cos^{2n}{x}=\frac{1}{2^{2n-1}}\left[ \sum_{k=0}^{n-1}{2n \choose k}\cos{2(n-k)x}+\frac{1}{2}{2n \choose n} \right] \newline & \cos^{2n+1}{x}=\frac{1}{2^{2n}}\sum_{k=0}^{n}{2n+1 \choose k}\cos{(2n-2k+1)x} \newline \end{aligned}$$ ...

August 1, 2021 · 1 min · Kenshin2438